Comparison of the Carbon Bond and SAPRC photochemical mechanisms under conditions relevant to southeast Texas

Maedeh Faraji, Yosuke Kimura, Elena McDonald-Buller, and David T. Allen

Center for Energy and Environmental Resources (R7100), 10100 Burnet Rd., The University of Texas at Austin, Austin, TX 78758 (mfaraji@mail.utexas.edu;512 471-0523)

Predictions of SAPRC and CB-IV in Houston's Highly Reactive Industrial Source Region

SAPRC

- Developed by Carter¹ (1990) at the Statewide Air Pollution Research Center.
- Used to quantify reactivities for VOCs for California Air Resources Board (CARB).

Carbon Bond (CB) (Gery² et al., 1989)

• Widely used in models of regional air quality for regulatory applications.

Domain-wide maximum ozone concentrations in CAMx on August 30, 2000 SAPRC CB-IV CB-IV Domain-wide maximum ozone concentrations in CAMx on August 30, 2000 SAPRC minus CB-IV SAPRC minus CB-IV Up to 45 ppb difference.

Differences between SAPRC and CB-IV in box model under conditions of Houston's industrial source region

Conducted sensitivity studies to identify specific hydrocarbons contributing to differences.

- Composition of VOCs emitted into the box replaced with a single chemical species.
- Sensitivity studies not representative of actual atmospheric conditions.

Ozone predictions in box model when VOC emissions assumed to be single explicitly-modeled species vs. mono-substituted aromatics

Aromatics Oxidation

Different predictions of cresols for consistent mono-substituted aromatics inventories

SAPRC predicts higher ratios of ring-opening to ring-retaining products relative to CB-IV which lead to more free radicals in SAPRC.

Hypothesis: If aromatics chemistry explains entire difference between mechanisms, eliminating aromatics should cause mechanisms to converge.

without aromatics emissions 50.0 65 37.5 25.0 12.5 PPB 1 August 20 2000 15:00:00

Even after eliminating all aromatics emissions, large differences in ozone persist between mechanisms, suggesting that additional causes of differences are also important.

Free Radical Chemistry

Predictions of hydroxyl radical concentrations and termination rates

- Higher prediction of hydroxyl radical concentrations in SAPRC relative to CB-IV.
- Higher termination rate of hydroxyl radicals in SAPRC relative to CB-IV.
- → Higher formation rate of hydroxyl radicals in SAPRC relative to CB-IV.

Since photolysis of aldehydes is a dominant pathway of radical formation, explored differences in the chemistry of aldehydes between SAPRC and CB-IV.

Higher Aldehydes Formation

- The chemistry of the sink of higher aldehydes is similar between SAPRC and CB-IV.
- In addition to the reactions producing higher aldehydes in CB-IV, there are additional sources of higher aldehydes in SAPRC.

Relative production of higher aldehydes in SAPRC and CB-IV at location of maximum difference in ozone

Dominant sources of higher aldehydes in SAPRC but not in CB-IV:

- higher aldehydes + OH
- higher peroxyacyl radicals + NO
- higher reactivity non-aldehyde oxygenates + OH
- organic nitrates + OH
- methyl vinyl ketone + OH
- aromatic ring-opening products + OH

Summary

- Differences of up to 45 ppb in ozone concentrations between SAPRC and CB-IV under Houston-Galveston conditions.
- Differences due to complex and interacting phenomena:
 - Aromatics oxidation.
 - Radical termination and generation.

References

- 1. Carter, W.P.L.; A detailed mechanism for the gas-phase atmospheric reactions of organic compounds; *Atmos. Environ.* 1990, 24, 481-518.
- 2. Gery, M.W.; Whitten, G.Z.; Killus, J.P.; Dodge, M.C.; A photochemical kinetics mechanism for urban and regional scale computer modelilng; *J. Geophys. Res.* 1989, 94, 12925-12956.
- 3. Texas Air Quality Study, II; http://www.utexas.edu/research/ceer/texaqsII/.